If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+76x-192=0
a = 4; b = 76; c = -192;
Δ = b2-4ac
Δ = 762-4·4·(-192)
Δ = 8848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8848}=\sqrt{16*553}=\sqrt{16}*\sqrt{553}=4\sqrt{553}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(76)-4\sqrt{553}}{2*4}=\frac{-76-4\sqrt{553}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(76)+4\sqrt{553}}{2*4}=\frac{-76+4\sqrt{553}}{8} $
| 2.5(a+4)-3.2=14.3a=3 | | 36x^2=42x | | -12-6s-12=10-4s | | -0.71x=-0.3 | | 7(x+1)-(4x-3)=3 | | 16-12m=-8m | | 9-5w=2w-10-9 | | 69x+1931x-27=40(50x+59) | | 14x-6=7x-55 | | 3(w-1)-3=-3(-7+3)-6w | | x2+-8x-16=36 | | 8b-7=7b | | 10+7z=2z | | 8p+10=10p-10 | | 4(x-3)+5=16+2x | | -10-z-6z=10+3z | | √x-8=5-√8-7 | | 36+w=7w | | 4-5h=h-8 | | (16x+48)+28x=190 | | (y/2)2=16 | | 9-8n=-9n | | 4/6x-8=-12 | | 6(u-6)=4u-34 | | 7x+8+4x-4=180 | | -x^2+230x-8,600=0 | | 3x+8+4x-4=180 | | 11-2p-10=p-5 | | -5(m-6)-4(3m-3)=42 | | 3(r+4)+2r+40=2 | | x=30+2-300 | | (5x+87)=(10x+17) |